Contents

Introduction	1
Chapter 1. Differential Equations and their Solutions	3
1.1. First Order ODE: Existence and Uniqueness	3
1.2. Euler's Method	16
1.3. Stationary Points and Closed Orbits	19
1.4. Continuity with Respect to Initial Conditions	22
1.5. Chaos—Or a Butterfly Spoils Laplace's Dream	25
1.6. Analytic ODE and their Solutions	32
1.7. Invariance Properties of Flows	34
Chapter 2. Linear Differential Equations	37
2.1. First Order Linear ODE	37
2.2. Non-autonomous First Order Linear ODE	48
2.3. Coupled and Uncoupled Harmonic Operators	50
2.4. Inhomogeneous Linear Differential Equations	52
2.5. Asymptotic Stability of Nonlinear ODE	53
2.6. Forced Harmonic Oscillators	55
2.7. Exponential Growth and Ecological Models	56

ii

Contents

Chapter 3. 2nd Order ODE and The Calculus of Variations	63
3.1. Tangent Vectors and the Tangent Bundle	63
3.2. Second Order Differential Equations	66
3.3. The Calculus of Variations	68
3.4. The Euler-Lagrange Equations	70
3.5. Conservation Laws for Euler-Lagrange Equations	73
3.6. Two Classic Examples	74
3.7. Derivation of the Euler-Lagrange Equations	77
3.8. More General Variations	80
3.9. The Theorem of E. Noether	80
3.10. Lagrangians Defining the Same Functional	81
3.11. Riemannian Metrics and Geodesics	85
3.11. A Preview of Classical Mechanics	86
Chapter 4. Newtonian Mechanics	91
4.1. Introduction	91
4.2. Newton's Law's of Motion	93
4.3. Newtonian Kinematics	96
4.4. Classical Mechanics as a Physical Theory	99
4.5. Potential Functions and Conservation of Energy	106
4.6. One-dimensional Systems	111
4.7. The Third Law and Conservation Principles	118
4.8. Synthesis and Analysis of Mechanical Systems	122
4.9. Linear Systems and Harmonic Oscillators	125
4.10. Small Oscillations About Equilibrium	126
Chapter 5. Numerical Methods	133
5.1. Introduction	133
5.2. Fundamental Examples and Their Behavior	141
5.3. Summary of Method Behavior on Model Problems	167
5.4. Pairing for Error, Step-size, and Order Control	173

5.5 Behavior of Methods on a Model 2×2 System	176
5.6. Stiff Systems and the Method of Lines	183
5.7. Eulers Method: Convergence Analysis	199
Appendix A. Review of Metric and Normed Spaces	211
A.1. Linear Algebra and Analysis	211
A.2. Inner-Product Spaces	213
Appendix B. The Magic of Iteration	219
B.1 The Banach Contraction Principle	219
B.2 Newton's Method	224
B.3 The Inverse Function Theorem	226
B.4 The Existence and Uniqueness Theorem for ODE	227
Appendix C. Vector Fields as Differential Operators	229
Appendix D. Coordinate Systems and Canonical Forms	233
D.1 Local Coordinates	233
D.2 Some Canonical Forms	236
Appendix E. Parametrized Curves and Arclength	241
Appendix F. Smoothness with Respect to Initial Conditions	243
Appendix G. Canonical Form for Self-Adjoint Operators	245
G.1 The Spectral Theorem	245
Appendix H. Runge-Kutta Methods	249
Appendix I. Multistep Methods	267
Appendix J. Iterative Interpolation and its Error	291
Bibliography	294
Index	295