
Chapter 4

Newtonian Mechanics

4.1. Introduction

The world we live in is a complex place, and we must expect any

theory that describes it accurately to share that complexity. But

there are three assumptions, satisfied at least approximately in many

important physical systems, that together lead to a considerable sim-

plification in the mathematical description of systems for which they

are valid.

The first of these assumptions is that the system is “isolated”,

or “closed”, meaning that all forces influencing the behavior of the

system are accounted for within the system. The second assumption

is that the system is “nonrelativistic”, meaning that all velocities are

small compared to the speed of light. The third assumption is that

the system is “nonquantum”, meaning that the basic size parameters

of the system are large compared with those of atomic systems (or,

more precisely, that the actions involved are large multiples of the

fundamental Planck unit of action).

These assumptions put us into the realm of “classical” physics,

where dynamical interactions of material bodies are adequately de-

scribed by the famous three laws of motion of Newton’s Principia.

Of course, such systems can still exhibit great complexity, and in

fact even the famous “three body problem”—to describe completely

the motions of three point particles under their mutual gravitational

attraction—is still far from “solved”. Moreover, at least the latter

two of these assumptions are quite sophisticated in nature, and even

explaining them carefully requires some doing. Later we shall see that
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a comparatively unsophisticated fourth assumption—that a system is

“close to equilibrium”—cuts through all the complexity and reduces

a problem to one that is completely analyzable (using an algorithm

called the “method of small vibrations”). This magical assumption,

which in effect linearizes the situation, is far from universally valid—

magic after all only works on special occasions. But when it does

hold, its power is much too valuable to ignore, and we will look at

it in some detail at the end of this chapter, after developing the ba-

sic theory of Newtonian mechanics and illustrating it with several

important examples.

We commence our study of Classical Mechanics with a little his-

tory.1

4.2. Newton’s Laws of Motion

We have already referred several times to “Newton’s Laws of Mo-

tion”. They are a well-recognized milestone in intellectual history

and could even be said to mark the beginning of modern physical

science, so it is worth looking at them in more detail. They were first

published in July of 1686 in a remarkable treatise, usually referred to

as Newton’s Principia,2 and it is not their mere statement that gives

them such importance but rather the manner in which Newton was

able to use them in Principia to develop a mathematically rigorous

theory of particle dynamics.

Let us look first at Newton’s original formulation of his Laws of

Motion:

AXIOMATA SIVE LEGES MOTUS

Lex I. Corpus omne perseverare in statuo suo quiescendi vel mov-

endi uniformiter in directum, nisi quatenus a viribus impres-

sis cogitur statum illum mutare.

1We are grateful to Professor Michael Nauenberg of UCSC for his critical
reading of this section and for correcting several inaccuracies in these historical
remarks.

2The full Latin title is “Philosophiae Naturalis Principia Mathematica”, or
in English, “Mathematical Principles of Natural Philosophy”. This first edition
is commonly referred to as the 1687 edition, since it was not distributed until a
year after it was printed.
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Lex II. Mutationem motus proportionalem esse vi motrici impressae,

& fieri secundum lineam rectam qua vis illa imprimitur.

Lex III. Actioni contrariam semper & qualem esse reactionem: sive

corporum duorum actiones in se mutuo semper esse quales &

in partes contrarias dirigi.

Even though we are sure you had no difficulty with the Latin, let’s

translate that into English:

AXIOMS CONCERNING LAWS OF MOTION

Law 1. Every body remains in a state of rest or of uniform motion

in a straight line unless compelled to change that state by

forces acting on it.

Law 2. Change of motion is proportional to impressed motive force

and is in the same direction as the impressed force.

Law 3. For every action there is an equal and opposite reaction, or,

the mutual actions of two bodies on each other are always

equal and directed to opposite directions.

The first thing to remark is that, mathematically speaking, there are

only two independent laws here—the First Law is clearly a special

case of the second, obtained by setting the “impressed motive force”

to zero.3

Another point worth mentioning is that the Second Law does not

really say “F = ma”. Newton was developing the calculus at the same

time he was writing the Principia, and no one would have understood

his meaning if he had written the Second Law as we do today. In

fact, if one reads the Principia, it becomes clear that what Newton

intended by the Second Law is something like, “If you strike an object

3However, as we shall see later, the First Law does have physical content
that is independent of and prior to the Second Law: it asserts the existence
of so-called “inertial frames of reference”, and it is only in inertial frames that
the Second Law is valid. Moreover, the First Law also has great historical and
philosophical importance, as we shall explain in more detail at the end of this
section.
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with a hammer, then the change of its momentum is proportional to

the strength with which you hit it and is in the same direction as the

hammer moves.” That is, Newton is thinking about an instantaneous

impulse rather than a force applied continuously over time. So how

did Newton deal with a nonimpulsive force that acted over an interval

of time, changing continuously as it did so? Essentially he worked

out the appropriate differential calculus details each time. That is,

he broke the interval into a large number of small subintervals during

which the force was essentially constant, applied the Second Law to

each subinterval, and then passed to the limit.

The Third Law does not say that the force (or “action”) that

one body exerts on another is directed along the line joining them.

However this is how it usually gets used in the Principia, and so it

is often considered to be part of the Third Law. We will distinguish

between the two versions by referring to them as the weak and strong

forms of Newton’s Third Law.

It is pretty clear that these Laws of Motion by themselves are in-

sufficient to predict how physical objects will move. What is missing

is a specification of what the forces actually are that objects exert

upon each other. However, later in the Principia Newton formulated

another important law of nature, called The Law of Universal Grav-

itation. It states that there is an attractive force between any two

particles of matter whose magnitude is proportional to the product of

their masses and inversely proportional to the square of the distance

separating them. One of the most remarkable achievements of the

Principia was Newton’s derivation of the form of his law of gravita-

tion from the Laws of Motion together with Kepler’s laws of planetary

motion, and we well give an account of how Newton accomplished this

later, after we have developed the necessary machinery.

If one takes Newton’s law of gravitation seriously, it would ap-

pear that a small movement of a massive object on the Earth would

be instantaneously felt as a change in the gravitational force at arbi-

trarily great distances—say on Jupiter. This “action at a distance”

was something that made Newton and many of his contemporaries

quite uncomfortable. Today we know that gravitation does not work

precisely the way that Newton’s law suggests. Instead, gravitation
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is described by a field, and changes in this field propagate with the

speed of light. The force on a test particle is not a direct response to

the many far-off particles that together generate the field, but rather

it is caused by the interaction of the test particle with the gravita-

tional field in its immediate location. To a good approximation, the

gravitational field is described by a potential function that gives New-

ton’s law of gravity, but the detailed reality is more complicated, and

accounting for small errors observed in certain predictions of Newto-

nian gravitation requires the more sophisticated theory of Einstein’s

General Relativity.

Newton’s Laws of Motion themselves are now known to be only

an approximation. In situations where all the velocities involved

are small compared to the speed of light, Newton’s Laws of Motion

are highly accurate, but at very high velocities one needs Einstein’s

more refined theory of Special Relativity. Newton’s Laws of Mo-

tion also break down when dealing with the very small objects of

atomic physics. In this realm the more complex Quantum Mechanics

is needed to give an accurate description of how particles move and

interact.

But even though Newton’s Laws of Motion and his Law of Grav-

itation are not the ultimate description of physical reality, it should

not be forgotten that they give an amazingly accurate description of

the dynamics of massive objects over a vast range of masses, veloci-

ties, and distances. In particular, in the two hundred years following

the publication of Principia, the consequences of Newton’s Laws of

Motion were developed into a mathematical theory of great elegance

and power that among other successes made predictions concerning

the motions of the planets, moons, comets, and asteroids of our own

solar system that were verified with remarkable accuracy. We will

cover some of this theory below.

We will end this mainly historical section with an explanation of

why the First Law of Motion has such great historical and philosophi-

cal importance. We quote Michael Nauenberg (with permission) from

part of a private exchange with him on this subject:

Newton made it clear in the Principia that he credited

Galileo with the Second Law. What should be pointed
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out is that the great breaktrough in dynamics in Galileo

and Newton’s time came about with an understanding of

the First Law. Before then, it was understood that to ini-

tiate motion required an external force, but the idea that

motion could be sustained without an external force seems

to have escaped attention. Even stones and arrows some-

how had to be continuously pushed during their flight by

the surrounding air, according to Aristotles and later com-

mentators, until Galileo finally showed that the air only

slows them down, and in the absence of air friction, they

travelled along a parabolic path. In earlier manuscripts

Newton spoke also of “inertial forces”. Apparently even he

could not free himself completelely from millenia of confu-

sion.

4.3. Newtonian Kinematics

As has become traditional, we will begin our study of the Newtonian

worldview with a discussion of the kinematics of Newtonian physics,

i.e., the mathematical formalism and infrastructure that we will use to

describe motion, and only then will we go on to consider the dynamics ,

that is, the nature of the forces that express the real physical content

of Newton’s theory of motion.

A Newtonian (Dynamical) System (V, F ) consists of an orthog-

onal vector space V , called the configuration space of the system,

together with a vector field F on V , i.e., a smooth map F : V → V ,

called the force law of the system. (By an orthogonal vector space we

just mean a real vector space with a positive definite inner product.)

For the time being V will be finite dimensional and its dimension,

N , is called the number of degrees of freedom of the system (V, F ).

Later we will also consider the infinite-dimensional case. If you want

to think of V as being RN with the usual “dot-product”, that is fine,

but we will write 〈u, v〉 to denote the inner product of two elements

u and v in V and ‖v‖ to denote the “length” of a vector v (defined

by ‖v‖2 = 〈v, v〉).
The reason why we call V configuration space is that the points of

V are supposed to be in bijective correspondence with all the possible




