
Chapter 3

Second-Order ODE
and the Calculus
of Variations

3.1. Tangent Vectors and the Tangent Bundle

Let σ : I → Rn be a C1 curve in Rn and suppose that σ(t0) = p and

σ′(t0) = v. Up until this point we have referred to v as either the

velocity or the tangent vector to σ at time t0. From now on we will

make a small but important distinction between these two concepts.

While the distinction is not critical in dealing with first-order ODE,

it will simplify our discussion of second-order ODE. Henceforth we

will refer to v as the velocity of σ at time t0 and define its tangent

vector at time t0 to be the ordered pair σ̇(t0) := (p, v). (If you are

familiar with the distinction that is sometimes made between “free”

and “based” vectors, you will recognize this as a special case of that.)

The set of all tangent vectors (p, v) we get in this way is called

the tangent bundle of Rn, and we will denote it by TRn. Clearly

TRn = Rn×Rn, so you might think that it is a useless complication

to introduce this new symbol, but in fact there is a good reason for

using this kind of redundant notation. As mathematical constructs

get more complex, it is important to have notation that gives visual

clues about what symbols mean. So, in particular, when we want

63



64 3. Second-Order ODE and the Calculus of Variations

to emphasize that a pair (p, v) is referring to a tangent vector, it is

better to write (p, v) ∈ TRn rather than (p, v) ∈ Rn ×Rn.

The projection of TRn onto its first factor, taking (p, v) to its

base point p, will be denoted by Π : TRn → Rn, and it is called the

tangent bundle projection. (There is of course another projection,

onto the second factor, but it will play no role in what follows and we

will not give it a name.) The set of all tangent vectors that project

onto a fixed base point p will be denoted by TpR
n. It is called the

tangent space toRn at the point p, and its elements are called tangent

vectors at p. It is clearly an n-dimensional real vector space, and its

dual space, the space of linear maps of TpR
n into R, is called the

cotangent space of Rn at p and is denoted by T∗
pR

n.

Let f be a smooth real-valued function defined in an open set

O of Rn. If p ∈ O and V = (p, v) ∈ TpR
n, recall that V f , the

directional derivative of f at p in the direction v, is defined as V f :=∑n
i=1 vi

∂f
∂xi

(p) (see Appendix C). If as above σ : I → Rn is a smooth

curve and V = σ̇(t0) is its tangent vector at time t0, then by the chain

rule
(

d
dt

)
t=t0

f(σ(t)) = V f . We will follow the customary practice

of using the symbolic differentiation operator
∑n

i=1 vi(
∂

∂xi
)p as an

alternative notation for the tangent vector V . If we fix f , then V �→
V f is a linear functional, dfp, on TpR

n (i.e., an element of T∗
pR

n)

called the differential of f at p.

Note that the function f defined on O gives rise to two associated

functions in Π−1(O). The first is just f ◦ Π, (p, v) �→ f(p), and the

second is df , (p, v) �→ dfp(v). This last remark is the basis of a very

important construction that “promotes” a system of local coordinates

(x1, . . . , xn) for R
n in O (see Appendix D) to a system of local coor-

dinates (q1, . . . , qn, q̇1, . . . , q̇n) for TRn in Π−1(O) called the associ-

ated canonical coordinates for the tangent bundle. Namely, we define

qi := xi ◦ Π and q̇i := dxi. Suppose V1 = (p1, v1) and V2 = (p2, v2)

are in Π−1(O) and that qi(V1) = qi(V2) and q̇i(V1) = q̇i(V2) for all

i = 1, . . . , n. Since the xi are local coordinates in O and xi(p1) =

qi(V1) = qi(V2) = xi(p2), it follows that p1 = p2 = p. It also follows

from the fact that xi is a local coordinate system that the (dxi)p are

a basis for TpR
n; hence (dxi)p(v1) = q̇i(V1) = q̇i(V2) = (dxi)p(v2)

implies v1 = v2. Thus V1 = V2, so (q1, . . . , qn, q̇1, . . . , q̇n) really are
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local coordinates for TRn in Π−1(O). Note that for each p in O,

(q̇1, . . . , q̇n) are actually Cartesian coordinates on TpR
n. We will be

using canonical coordinates almost continuously from now on.

�Exercise 3–1. Check that if (x1, . . . , xn) are the standard coor-

dinates for Rn, then (q1, . . . , qn, q̇1, . . . , q̇n) are the standard coordi-

nates for TRn = R2n.

In Appendix C we define a certain natural vector field R on Rn—

called the radial or Euler vector field—by R(x) := x, and we point out

that it has the same expression in every Cartesian coordinate system

(x1, . . . , xn), namely R =
∑n

i=1 xi
∂

∂xi
. We also recall there Euler’s

famous theorem on homogeneous functions, which states that if f :

Rn → R is C1 and is positively homogeneous of degree k (meaning

f(tx) = tkf(x) for all t > 0 and x �= 0), then Rf =
∑n

i=1 xi
∂f
∂xi

= kf .

We now define a vector field R on TRn, also called the radial or

Euler vector field, by defining it on each tangent space TpR
n to be

the radial vector field on TpR
n. Explicitly, R(p, v) = (0, v). Recalling

that (q̇1, . . . , q̇n) are Cartesian coordinates on TpR
n we have

3.1.1. Proposition. If (q1, . . . , qn, q̇1, . . . , q̇n) are canonical co-

ordinates for TRn in Π−1(O), then the radial vector field R on TRn

has the expression

R =

n∑
i=1

q̇i
∂

∂q̇i

in Π−1(O). Hence if F : TRn → R is a C1 real-valued function that

is positively homogeneous of degree k on each tangent space TpR
n,

then RF =
∑n

i=1 q̇i
∂F
∂q̇i

= kF .

Suppose that σ : I → Rn is a C1 curve. A path σ̃ : I → TRn is

called a lifting of σ if it projects onto σ under Π, i.e., if it is of the form

σ̃(t) = (σ(t), λ(t)) for some C1 map λ : I → Rn. You should think of

a lifting of σ as being a vector field defined along σ. There are many

different possible liftings of σ. For example, the lifting t �→ (σ(t), 0) is

the zero vector field along σ, and t �→ (σ(t), σ′′(t)) is the acceleration

vector field of σ. The tangent vector field σ̇, t �→ (σ(t), σ′(t)) plays an

especially important role, and we shall also refer to it as the canonical
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lifting of σ to the tangent bundle. We note that it takes Ck curves

in Rn (k ≥ 1) to Ck−1 curves in TRn.

Let x1, . . . , xn be local coordinates in O, and assume σ maps

I into O. In these coordinates the curve σ is described by its so-

called parametric representation, xi(t) := xi(σ(t)). Let’s see what

the parametric representation is for the canonical lifting, σ̇(t), with

respect to the canonical coordinates (q1, . . . , qn, q̇1, . . . , q̇n) defined

by the xi. Since Π ◦ σ̇(t) = σ(t), it follows from the definition of the

qi that

qi(σ̇(t)) = xi(Π(σ̇(t))) = xi(t).

On the other hand,

q̇i(σ̇(t)) = dxi(σ′(t)) =
d

dt
xi(σ(t)) =

dxi(t)

dt
.

3.2. Second-Order Differential Equations

We have seen that solving a first-order differential equation in Rn

involves finding a path x(t) in Rn given

1) its initial position and

2) its velocity as a function of its position and the time.

Similarly, solving a second-order differential equation in Rn involves

finding a path x(t) in Rn given

1) its initial position and its initial velocity and

2) its acceleration as a function of its position, its velocity, and the

time.

To make this precise, suppose A : Rn × Rn × R → Rn is a C1

function. A C2 curve x(t) in Rn is said to be a solution of the

second-order differential equation in Rn, d2x
dt2 = A

(
x, dxdt , t

)
, if x′′(t) =

A(x(t), x′(t), t) holds for all t in the domain of x. Given such a second-

order differential equation on Rn, the associated initial value problem

(or IVP) is to find a solution x(t) for which both the position x(t0)

and the velocity x′(t0) have some specified values at a particular time

t0.

Fortunately, we do not have to start all over from scratch to de-

velop theory and intuition concerning second-order equations. There
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is an easy trick that we already remarked on in Chapter 1 that effec-

tively reduces the consideration of a second-order differential equa-

tion in Rn to the consideration of a first-order equation in TRn =

Rn ×Rn. Namely, given A : Rn ×Rn ×R → Rn as above, define a

time-dependent vector field V on TRn by V (p, v, t) = (v,A(p, v, t)).

Suppose first that (x(t), v(t)) is a C1 path in TRn. Note that its de-

rivative is just (x′(t), v′(t)), so this path is a solution of the first-order

differential equation d(x,v)
dt = V (x, v, t) if and only if (x′(t), v′(t)) =

V (x(t), v(t), t) = (v(t), A(x(t), v(t), t)), which of course means that

x′(t) = v(t) while v′(t) = A(x(t), v(t), t). But then x′′(t) = v′(t) =

A(x(t), v(t), t), so x(t) is a solution of the second-order equation d2x
dt2 =

A
(
x, dxdt , t

)
. Conversely, if x(t) is a solution of d2x

dt2 = A
(
x, dx

dt , t
)
and

we define v(t) = x′(t), then (x(t), v(t)) is the canonical lifting of x(t)

and is a solution of d(x,v)
dt = V (x, v, t). What we have shown is

3.2.1. Reduction Theorem for Second-Order ODE. The

canonical lifting of C2 curves in Rn to C1 curves on TRn sets up

a bijective correspondence between solutions of the second-order dif-

ferential equation d2x
dt2 = A

(
x, dx

dt , t
)
on Rn and solutions of the first-

order equation d(x,v)
dt = V (x, v, t) on TRn, where V (x(t), v(t), t) =

(v(t), A(x(t), v(t), t)).

�Exercise 3–2. Use this correspondence to formulate and prove

existence, uniqueness, and smoothness theorems for second-order dif-

ferential equations from the corresponding theorems for first-order

differential equations. Extend this to higher-order differential equa-

tions.

According to the Reduction Theorem, a second-order ODE in Rn

is described by some vector field on TRn. But be careful, not every

vector field V on TRn arises in this way.

�Exercise 3–3. Show that a time-dependent vector field V (p, v, t)

on TRn arises as above from some second-order ODE on Rn, d2x
dt2 =

A
(
x, dxdt , t

)
, if and only if Π(V (p, v, t)) = v for all (p, v, t) ∈ TRn×R.
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�Exercise 3–4. Let x1, . . . , xn be local coordinates in some open

set O of Rn and let q1, . . . , qn, q̇1, . . . , q̇n be the associated canon-

ical coordinates in TRn. Suppose that σ : I → O is a smooth

path and xi(t) := xi(σ(t)) its parametric representation, and let

qi(t) := qi(σ̇(t)), q̇i(t) := q̇i(σ̇(t)) be the parametric representa-

tion of the canonical lifting σ̇. Show that σ is a solution of the

second-order ODE d2x
dt2 = A

(
x, dx

dt , t
)
if and only if for all t ∈ I,

dq̇i(t)
dt = Ai(q1(t), . . . , qn(t), q̇1(t), . . . , q̇n(t), t). (Hint: Recall that

qi(t) := xi(t) and q̇i(t) :=
dxi(t)
dt .)

3.2.2. Definition. Let d2x
dt2 = A

(
x, dx

dt

)
be a time-independent

second-order ODE on Rn. A function f : TRn → R is called a

constant of the motion (or a conserved quantity or a first integral)

of this ODE if f is constant along the canonical lifting, σ̇, of every

solution curve σ (equivalently, if whenever x(t) satisfies the ODE,

then f(x(t), x′(t)) is a constant).

�Exercise 3–5. Let V be a vector field in TRn defined by V (p, v)

:= (v,A(p, v)). Show that f : TRn → R is a constant of the motion

of d2x
dt2 = A

(
x, dxdt

)
if and only if the directional derivative, V f , of f

in the direction V , is identically zero.

3.3. The Calculus of Variations

Where do second-order ordinary differential equations come from—or

to phrase this question somewhat differently, what sort of things get

represented mathematically as solutions of second-order ODEs?

Perhaps the first answer that will spring to mind for many peo-

ple is Newton’s Second Law of Motion, “F = ma”, which without

doubt inspired much of the early work on second-order ODE. But as

we shall soon see, important as Newton’s Equations of Motion are,

they are best seen mathematically as a special case of a much more

general class of second-order ODE, called Euler-Lagrange Equations,

and a more satisfying answer to our question will grow out of an

understanding of this family of equations.

Euler-Lagrange Equations arise as a necessary condition for a par-

ticular curve to be a maximum (or minimum) for certain real-valued


