
Chapter 2

Linear Differential
Equations

2.1. First-Order Linear ODE

Two differential equations that students usually meet very early in

their mathematical careers are the first-order “equation of exponen-

tial growth”,dxdt = ax, with the explicit solution x(t) = x(0)eat,

and the second-order “equation of simple harmonic motion”, d2x
dt2 =

−ω2x, whose solution can also be written down explicitly: x(t) =

x(0) cos(ωt) + x′(0)
ω sin(ωt). The interest in these two equations goes

well beyond the fact that they have simple and explicit solutions.

Much more important is the fact that they can be used to model suc-

cessfully many real-world situations. Indeed, they are so important

in both pure and applied mathematics that we will devote this and

the next several sections to studying various generalizations of these

equations and their applications to building models of real-world phe-

nomena. Let us start by looking at (and behind) the property that

gives these two equations their special character.

One of the most obvious features common to both of these equa-

tions is that their right-hand sides are linear functions. Now, in many

real-world situations the response of a system to an influence is well

approximated by a linear function of that influence, so granting that

the dynamics of such problems can be described by an ODE, it should

be no surprise that the dynamical equations for such systems are lin-

ear. In particular, if x measures the deviation of some system from

an equilibrium configuration, then there will usually be a restoring
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force driving the system back towards equilibrium, the magnitude of

which is linear in x—this is the general formulation of Hooke’s Law

that “stress is proportional to strain”. From a mathematical point

of view, there is nothing mysterious about this—the restoring force

is actually only approximately linear, with the approximation get-

ting better as we approach equilibrium. If we assume only that the

restoring force is a differentiable function of the deviation from equi-

librium, then, since it vanishes at the equilibrium, we see that the

approximate linearity of the force near equilibrium is just a manifes-

tation of Taylor’s Theorem with Remainder. This observation points

to a further reason for why linear equations play such a central role.

Suppose we have a nonlinear differential equation dx
dt = V (x). At an

“equilibrium point” p, i.e., a point where V (p) = 0, define A to be the

differential of V at p. Then for small x, Ax is a good approximation

of V (p+x), so we can hope to approximate solutions of the nonlinear

equation near p with solutions of the linear equation dx
dt = Ax near 0.

In fact this technique of “linearization” is one of the most powerful

tools for analyzing nonlinear differential equations and one that we

shall return to repeatedly.

The most natural generalization of the equation of exponential

growth to an n-dimensional system is an equation of the form dx
dt =

Ax, where now x represents a point ofRn and A : Rn → Rn is a linear

operator, or equivalently an n× n matrix. Such an equation is called

an autonomous, first-order, linear ordinary differential equation.

�Exercise 2–1. The Principle of Superposition. Show that

any linear combination of solutions of such a system is again a solu-

tion, so that if as usual σp denotes the solution of the initial value

problem with initial condition p, then σp1+p2
= σp1

+ σp2
.

When n = 1, A is just a scalar, and we know that σp(t) = etAp,

or in other words, the flow φt generated by the differential equation is

just multiplication by etA. What we shall see below is that for n > 1

we can still make good sense out of etA, and this same formula still

gives the flow.
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We saw very early that in one-dimensional space successive ap-

proximations worked particularly well for the linear case, so we will

begin by attempting to repeat that success in higher dimensions.

Denote by C(R,Rn) the continuous maps of R into Rn, and as

earlier let F = FA,x0 be the map of C(R,Rn) to itself defined by

F (x)(t) := x0 +
∫ t

0
A(x(s)) ds. Since A is linear, this can also be

written as F (x)(t) := x0 + A
∫ t

0
x(s) ds. We know that the solution

of the IVP with initial value x0 is just the unique fixed point of F ,

so let’s try to find it by successive approximations starting from the

constant path x0(t) = x0. If we recall that the sequence of successive

approximations, xn, is defined recursively by xn+1 = F (xn), then an

elementary induction gives xn(t) =
∑n

k=0
1
k! (tA)kx0, suggesting that

the solution to the initial value problem should be given by the limit

of this sequence, namely the infinite series
∑∞

k=0
1
k! (tA)kx0. Now (for

obvious reasons) given a linear operator T acting on Rn, the limit of

the infinite series of operators
∑∞

k=0
1
k!T

k is denoted by eT or exp(T ),

so we can also say that the solution to our IVP should be etAx0.

The convergence properties of the series for eTx follow easily from

the Weierstrass M -test. If we define Mk = 1
k! ‖T‖

k
r, then

∑
Mk

converges to e‖T‖r, and since
∥∥ 1
k!T

kx
∥∥ < Mk when ‖x‖ < r, it follows

that
∑∞

k=0
1
k!T

kx converges absolutely and uniformly to a limit, eTx,

on any bounded subset of Rn.

�Exercise 2–2. Provide the details for the last statement. (Hint:

Since the sequence of partial sums
∑n

k=0Mk converges, it is Cauchy;

i.e., given ε > 0, we can choose N large enough that
∑m+k

m Mk < ε

provided m > N . Now if ‖x‖ < r,
∥∥∥∑m+k

k=0
1
k!T

kx−
∑m

k=0
1
k!T

kx
∥∥∥ <

∑m+k
m Mk < ε, proving that the infinite series defining eTx is uni-

formly Cauchy and hence uniformly convergent in ‖x‖ < r.)

Since the partial sums of the series for eTx are linear in x, so is their

limit, so eT is indeed a linear operator on Rn.

Next observe that since a power series in t can be differentiated

term by term, it follows that d
dte

tAx0 = AetAx0; i.e., x(t) = etAx0 is

a solution of the ODE dx
dt = Ax. Finally, substituting zero for t in
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the power series gives e0Ax0 = x0. This completes the proof of the

following proposition.

2.1.1. Proposition. If A is a linear operator on Rn, then the

solution of the linear differential equation dx
dt = Ax with initial con-

dition x0 is x(t) = etAx0.

Figure 2.1. A typical solution of a first-order linear ODE in R3.

Note: The dots are placed along the solution at fixed time

intervals. This gives a visual clue to the speed

at which the solution is traversed.

As a by-product of the above discussion we see that a linear

ODE dx
dt = Ax is complete, and the associated flow φt is just etA.

By a general fact about flows it follows that e(s+t)A = esAetA and

e−A = (eA)−1, so exp : A �→ eA is a map of the vector space L(Rn)

of all linear maps of Rn into the group GL(Rn) of invertible elements

of L(Rn) and for each A ∈ L(Rn), t �→ etA is a homomorphism of

the additive group of real numbers into GL(Rn).
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�Exercise 2–3. Show more generally that if A and B are commut-

ing linear operators on Rn, then eA+B = eAeB . (Hint: Since A and

B commute, the Binomial Theorem is valid for (A + B)k, and since

the series defining eA+B is absolutely convergent, it is permissible to

rearrange terms in the infinite sum. For a different proof, show that

etAetBx0 satisfies the initial value problem dx
dt = (A+B)x, x(0) = x0,

and use the Uniqueness Theorem.)

At first glance it might seem hopeless to attempt to solve the

linear ODE dx
dt = Ax by computing the power series for etA—if A

is a 10 × 10 matrix, then computing just the first dozen powers of

A will already be pretty time consuming. However, suppose that v

is an eigenvector of A belonging to the eigenvalue λ, i.e., Av = λv.

Then Anv = λnv, so that in this case etAv = etλv! If we combine this

fact with the Principle of Superposition, then we see that we are in

good shape whenever the operator A is diagonalizable. Recall that

this just means that there is a basis of Rn, e1, . . . , en, consisting of

eigenvectors of A, so that Aei = λiei. We can expand an arbitrary

initial condition x0 ∈ Rn in this basis, i.e., x0 =
∑

i aiei, and then

etAx0 =
∑

i aie
tλ1ei is the explicit solution of the initial value problem

(a fact we could have easily verified without introducing the concept

of the exponential of a matrix).

Nothing in this section has depended on the fact that we were

dealing with real rather than complex vectors and matrices. If A :

Cn → Cn is a complex linear map (or a complex n×n matrix), then

the same argument as above shows that the power series for etAz

converges absolutely for all z in Cn (and for all t in C).

If A is initially given as an operator on Rn, it can be useful to

“extend” it to an operator on Cn by a process called complexification.

The inclusion of R in C identifies Rn as a real subspace of Cn, and

Cn is the direct sum (as a real vector space) Cn = Rn ⊕ iRn. If

z = (z1, . . . , zn) ∈ Cn, then we project on these subspaces by taking

the real and imaginary parts of z (i.e., the real vectors x and y whose

components xi and yi are the real and imaginary parts of zi). This

is clearly the unique decomposition of z in the form z = x+ iy with

both x and y in Rn. We extend A to Cn by defining Az = Ax+ iAy,
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and it is easy to see that this extended map is complex linear. (Hint:

It is enough to check that Aiz = iAz.)

�Exercise 2–4. Show that if we complexify an operator A on Rn

as above and if a curve z(t) in Cn is a solution of dz
dt = Az, then its

real and imaginary parts are also solutions of this equation.

What is the advantage of complexification? As the following ex-

ample shows, a nondiagonalizable operator A on Rn may become

diagonalizable after complexification, allowing us to solve dz
dt = Az

easily in Cn. Moreover, we can then apply the preceding exercise to

solve the initial value problem in Rn from the solution in Cn.

•Example 2–1. We can write the system dx1

dt = x2,
dx2

dt = −x1

as dx
dt = Ax, where A is the linear operator on R2 that is defined by

A(x1, x2) = (x2,−x1). Since A2 is minus the identity, A has no real

eigenvalues and so is not diagonalizable. But, if we complexify A,

then the vectors e1 = (1, i) and e2 = (1,−i) in C2 satisfy Ae1 = ie1
and Ae2 = −ie2, so they are an eigenbasis for the complexification of

A, and we have diagonalized A in C2. The solution of dz
dt = Az with

initial value e1 = (1, i) is eite1 = (eit, ieit). Taking real parts, we find

that the solution of the initial value problem for dx
dt = Ax with initial

condition (1, 0) is (cos(t),− sin(t)), while taking imaginary parts, we

see that the solution with initial condition (0, 1) is (sin(t), cos(t)).

By the Principle of Superposition the solution σ(a,b)(t) with initial

condition (a, b) is (a cos(t) + b sin(t),−a sin(t) + b cos(t)).

Next we will analyze in more detail the properties of the flow etA

on Cn generated by a linear differential equation dz
dt = Az. We have

seen that this flow is transparent for the case that A is diagonalizable,

but we want to treat the general case, so we will not assume this.

Our approach is based on the following elementary consequence of

the Principle of Superposition.

2.1.2. Reduction Principle. Let Cn be the direct sum of sub-

spaces Vi, each of which is mapped into itself by the operator A, and

let v ∈ Cn and v = v1 + · · · + vk, with vi ∈ Vi. If σp denotes the

solution of dz
dt = Az with initial condition p, then σvi(t) ∈ Vi for all t

and σv(t) = σv1(t) + · · ·+ σvk(t).


