Appendix G

Canonical Form
for Linear Operators

G.1. The Spectral Theorem

If V is an orthogonal vector space, then each element v of V' defines

a linear functional f, : V' — R, namely u — (u,v), and since f,(u) =
(u,v) is clearly linear in v as well as u, we have a linear map v — f, of
V into its dual space V*. Moreover the kernel of this map is clearly 0
(since, if v is in the kernel, then ||v]|* = (v,v) = f,(v) = 0), and since
V* has the same dimension as V, it follows by basic linear algebra
that this map is in fact a linear isomorphism of V with V*. We say
that v is dual to f, and vice versa.

Now let A : V — V be a linear map, and for each v in V let
A*v in V be the element dual to the linear functional v — (Au,v);
that is, A*v is defined by the identity (Au,v) = (u, A*v). It is clear
that v — A*v is linear, and we call this linear map A* : V. — V the
adjoint of A. If A* = A, then we say that A is self-adjoint.

>Exercise G—-1. Let L(V,V) denote the space of linear operators
on V. Show that A — A* is a linear map of L(V, V) to itself and that
it is its own inverse (i.e., A** = A). Show also that (AB)* = B*A*.

G.1.1. Proposition. Let A be a self-adjoint linear operator on
V and let W be a linear subspace of V. If W is invariant under A,
then so is W.
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Proof. If u € W+, we must show that Au is also in W+, i.e., that
(w, Au) = 0 for any w € W. Since Aw € W by assumption, (w, Au) =
(Aw,u) = 0 follows from u € W+. u

In what follows, A will denote a self-adjoint linear operator on V.
If X\ is any scalar, than we denote by Fy(A) the set of v in V such
that Av = Av. Tt is clear that E)(A) is a linear subspace of V, called
the A-eigenspace of A. If E)(A) is not the 0 subspace of V', then
we call A an eigenvalue of A, and every nonzero element of Ey(A) is
called an eigenvector corresponding to the eigenvalue \.

G.1.2.  Proposition. If X # pu, then E\(A) and E,(A) are
orthogonal subspaces of V.

>Exercise G-2. Prove this. (Hint: Let u € E\(A) and v € E,(A).
You must show (u,v) = 0. But Au,v) = (Au,v) = (u, Av) =
p{u, v).)

Note that it follows that a self-adjoint operator on an N-dimensional
orthogonal vector space can have at most N distinct eigenvalues.

G.1.3. Spectral Theorem for Self-Adjoint Operators. If A
is a self-adjoint operator on an orthogonal vector space V, then V
is the orthogonal direct sum of the eigenspaces E(A) corresponding
to the eigenvalues \ of A. Equivalently, we can find an orthonormal
basis for V' consisting of eigenvectors of A.

>Exercise G—3. Prove the equivalence of the two formulations.

We will base the proof of the Spectral Theorem on the following
lemma.

G.1.4. Spectral Lemma. A self-adjoint operator A : V — V
always has at least one eigenvalue unless V = 0.

Here is the proof of the Spectral Theorem. Let W be the direct
sum of the eigenspaces F)(A) corresponding to the eigenvalues \ of
A. We must show that W = V, or equivalently that W+ = 0. Now
W is clearly invariant under A, so by the first proposition of this
section, so is W*. Since the restriction of a self-adjoint operator
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to an invariant subspace is clearly still self-adjoint, by the Spectral
Lemma, if W+ # 0, then there would be an eigenvector of A in W+,
contradicting the fact that all eigenvectors of A are in W.

The proof of the Spectral Lemma involves a rather pretty geo-
metric idea. Recall that we have seen that A is derivable from the
potential function U(v) = 1(Av,v), i.e., Av = (VU), for all v in V.
So what we must do is find a unit vector v where (VU), is propor-
tional to v provided V # 0, i.e., provided the unit sphere in V' is not
empty. In fact, something more general is true.

G.1.5. Lagrange Multiplier Theorem (Special Case). Let
V' be an orthogonal vector space and f : V — R a smooth real-valued
function on V. Let v denote a unit vector in V' where f assumes its
maximum value on the unit sphere S of V. Then (Vf), is a scalar
multiple of v.

Proof. The scalar multiples of v are exactly the vectors normal to S
at v, i.e., orthogonal to all vectors tangent to S at v. So we have to
show that if u is tangent to S at v, then (V f), is orthogonal to u, i.e.,
that (u, (Vf),) = df,(u) = 0. Choose a smooth curve o(t) on S with
o(0) = v and ¢’(0) = u (for example, normalize v + tu). Then since
f(o(t)) has a maximum at t = 0, it follows that (d/dt);=of(c(t)) = 0.
But by definition of df, (d/dt)i—of(c(t)) = dfy(u). u

G.1.6. Definition. An operator A on an orthogonal vector space
V is positive if it is self-adjoint and if (Av,v) > 0 for all v # 0 in V.

>Exercise G—4. Show that a self-adjoint operator is positive if and
only if all of its eigenvalues are positive.

>Exercise G—5. Verify the intuitive fact that a unit vector v is
orthogonal to all vectors tangent to the unit sphere at v. (Hint:
Choose o as above and differentiate the identity (o (¢),o(t)) = 1.)

>Exercise G—6. Show that another equivalent formulation of the
Spectral Theorem is that a linear operator on an orthogonal vector
space is self-adjoint if and only if it has a diagonal matrix in some
orthonormal basis.





