
Appendix G

Canonical Form
for Linear Operators

G.1. The Spectral Theorem

If 𝑉 is an orthogonal vector space, then each element 𝑣 of 𝑉 defines

a linear functional 𝑓𝑣 : 𝑉 → 𝑅, namely 𝑢 �→ ⟨𝑢, 𝑣⟩, and since 𝑓𝑣(𝑢) =
⟨𝑢, 𝑣⟩ is clearly linear in 𝑣 as well as 𝑢, we have a linear map 𝑣 �→ 𝑓𝑣 of

𝑉 into its dual space 𝑉 ∗. Moreover the kernel of this map is clearly 0
(since, if 𝑣 is in the kernel, then ∥𝑣∥2 = ⟨𝑣, 𝑣⟩ = 𝑓𝑣(𝑣) = 0), and since

𝑉 ∗ has the same dimension as 𝑉 , it follows by basic linear algebra
that this map is in fact a linear isomorphism of 𝑉 with 𝑉 ∗. We say
that 𝑣 is dual to 𝑓𝑣 and vice versa.

Now let 𝐴 : 𝑉 → 𝑉 be a linear map, and for each 𝑣 in 𝑉 let

𝐴∗𝑣 in 𝑉 be the element dual to the linear functional 𝑢 �→ ⟨𝐴𝑢, 𝑣⟩;
that is, 𝐴∗𝑣 is defined by the identity ⟨𝐴𝑢, 𝑣⟩ = ⟨𝑢,𝐴∗𝑣⟩. It is clear
that 𝑣 �→ 𝐴∗𝑣 is linear, and we call this linear map 𝐴∗ : 𝑉 → 𝑉 the

adjoint of 𝐴. If 𝐴∗ = 𝐴, then we say that 𝐴 is self-adjoint .

⊳Exercise G–1. Let 𝐿(𝑉, 𝑉 ) denote the space of linear operators

on 𝑉 . Show that 𝐴 �→ 𝐴∗ is a linear map of 𝐿(𝑉, 𝑉 ) to itself and that
it is its own inverse (i.e., 𝐴∗∗ = 𝐴). Show also that (𝐴𝐵)∗ = 𝐵∗𝐴∗.

G.1.1. Proposition. Let 𝐴 be a self-adjoint linear operator on

𝑉 and let 𝑊 be a linear subspace of 𝑉 . If 𝑊 is invariant under 𝐴,

then so is 𝑊⊥.
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Proof. If 𝑢 ∈ 𝑊⊥, we must show that 𝐴𝑢 is also in 𝑊⊥, i.e., that
⟨𝑤,𝐴𝑢⟩ = 0 for any 𝑤 ∈𝑊 . Since 𝐴𝑤 ∈𝑊 by assumption, ⟨𝑤,𝐴𝑢⟩ =
⟨𝐴𝑤, 𝑢⟩ = 0 follows from 𝑢 ∈𝑊⊥.

In what follows, 𝐴 will denote a self-adjoint linear operator on 𝑉 .

If 𝜆 is any scalar, than we denote by 𝐸𝜆(𝐴) the set of 𝑣 in 𝑉 such

that 𝐴𝑣 = 𝜆𝑣. It is clear that 𝐸𝜆(𝐴) is a linear subspace of 𝑉 , called

the 𝜆-eigenspace of 𝐴. If 𝐸𝜆(𝐴) is not the 0 subspace of 𝑉 , then

we call 𝜆 an eigenvalue of 𝐴, and every nonzero element of 𝐸𝜆(𝐴) is

called an eigenvector corresponding to the eigenvalue 𝜆.

G.1.2. Proposition. If 𝜆 ∕= 𝜇, then 𝐸𝜆(𝐴) and 𝐸𝜇(𝐴) are

orthogonal subspaces of 𝑉 .

⊳Exercise G–2. Prove this. (Hint: Let 𝑢 ∈ 𝐸𝜆(𝐴) and 𝑣 ∈ 𝐸𝜇(𝐴).

You must show ⟨𝑢, 𝑣⟩ = 0. But 𝜆⟨𝑢, 𝑣⟩ = ⟨𝐴𝑢, 𝑣⟩ = ⟨𝑢,𝐴𝑣⟩ =
𝜇⟨𝑢, 𝑣⟩.)
Note that it follows that a self-adjoint operator on an 𝑁 -dimensional

orthogonal vector space can have at most 𝑁 distinct eigenvalues.

G.1.3. Spectral Theorem for Self-Adjoint Operators. If 𝐴

is a self-adjoint operator on an orthogonal vector space 𝑉 , then 𝑉

is the orthogonal direct sum of the eigenspaces 𝐸𝜆(𝐴) corresponding

to the eigenvalues 𝜆 of 𝐴. Equivalently, we can find an orthonormal

basis for 𝑉 consisting of eigenvectors of 𝐴.

⊳Exercise G–3. Prove the equivalence of the two formulations.

We will base the proof of the Spectral Theorem on the following

lemma.

G.1.4. Spectral Lemma. A self-adjoint operator 𝐴 : 𝑉 → 𝑉

always has at least one eigenvalue unless 𝑉 = 0.

Here is the proof of the Spectral Theorem. Let 𝑊 be the direct

sum of the eigenspaces 𝐸𝜆(𝐴) corresponding to the eigenvalues 𝜆 of

𝐴. We must show that 𝑊 = 𝑉 , or equivalently that 𝑊⊥ = 0. Now
𝑊 is clearly invariant under 𝐴, so by the first proposition of this

section, so is 𝑊⊥. Since the restriction of a self-adjoint operator
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to an invariant subspace is clearly still self-adjoint, by the Spectral

Lemma, if 𝑊⊥ ∕= 0, then there would be an eigenvector of 𝐴 in 𝑊⊥,
contradicting the fact that all eigenvectors of 𝐴 are in 𝑊 .

The proof of the Spectral Lemma involves a rather pretty geo-

metric idea. Recall that we have seen that 𝐴 is derivable from the

potential function 𝑈(𝑣) = 1
2 ⟨𝐴𝑣, 𝑣⟩, i.e., 𝐴𝑣 = (∇𝑈)𝑣 for all 𝑣 in 𝑉 .

So what we must do is find a unit vector 𝑣 where (∇𝑈)𝑣 is propor-
tional to 𝑣 provided 𝑉 ∕= 0, i.e., provided the unit sphere in 𝑉 is not
empty. In fact, something more general is true.

G.1.5. Lagrange Multiplier Theorem (Special Case). Let

𝑉 be an orthogonal vector space and 𝑓 : 𝑉 → 𝑅 a smooth real-valued

function on 𝑉 . Let 𝑣 denote a unit vector in 𝑉 where 𝑓 assumes its

maximum value on the unit sphere 𝑆 of 𝑉 . Then (∇𝑓)𝑣 is a scalar

multiple of 𝑣.

Proof. The scalar multiples of 𝑣 are exactly the vectors normal to 𝑆

at 𝑣, i.e., orthogonal to all vectors tangent to 𝑆 at 𝑣. So we have to

show that if 𝑢 is tangent to 𝑆 at 𝑣, then (∇𝑓)𝑣 is orthogonal to 𝑢, i.e.,
that ⟨𝑢, (∇𝑓)𝑣⟩ = 𝑑𝑓𝑣(𝑢) = 0. Choose a smooth curve 𝜎(𝑡) on 𝑆 with

𝜎(0) = 𝑣 and 𝜎′(0) = 𝑢 (for example, normalize 𝑣 + 𝑡𝑢). Then since

𝑓(𝜎(𝑡)) has a maximum at 𝑡 = 0, it follows that (𝑑/𝑑𝑡)𝑡=0𝑓(𝜎(𝑡)) = 0.

But by definition of 𝑑𝑓 , (𝑑/𝑑𝑡)𝑡=0𝑓(𝜎(𝑡)) = 𝑑𝑓𝑣(𝑢).

G.1.6. Definition. An operator 𝐴 on an orthogonal vector space

𝑉 is positive if it is self-adjoint and if ⟨𝐴𝑣, 𝑣⟩ > 0 for all 𝑣 ∕= 0 in 𝑉 .
⊳Exercise G–4. Show that a self-adjoint operator is positive if and

only if all of its eigenvalues are positive.

⊳Exercise G–5. Verify the intuitive fact that a unit vector 𝑣 is

orthogonal to all vectors tangent to the unit sphere at 𝑣. (Hint:

Choose 𝜎 as above and differentiate the identity ⟨𝜎(𝑡), 𝜎(𝑡)⟩ = 1.)
⊳Exercise G–6. Show that another equivalent formulation of the

Spectral Theorem is that a linear operator on an orthogonal vector

space is self-adjoint if and only if it has a diagonal matrix in some

orthonormal basis.




