
Appendix F

Smoothness
with Respect
to Initial Conditions

Suppose that 𝑉 is a 𝐶1 vector field on R𝑛 and assume that the

maximal solution 𝜎𝑝 of
𝑑𝑥
𝑑𝑡 = 𝑉 (𝑥) is defined on 𝐼 = [𝑎, 𝑏]. For each

𝑥 ∈ R𝑛, the differential of 𝑉 at 𝑥 is a linear map 𝐷𝑉𝑥 : R
𝑛 → R𝑛,

and it is continuous in 𝑥 since 𝑉 is 𝐶1. Thus 𝐴(𝑡) = 𝐷𝑉𝜎𝑝(𝑡) defines a

continuous map 𝐴 : 𝐼 → L(R𝑛). The differential equation 𝑑𝑥
𝑑𝑡 = 𝐴(𝑡)𝑥

is an example of the nonautonomous linear ODEs studied in Section

2.2. It is called the variational equation associated to the solution

𝜎. By the general theory of such equations developed in Chapter 2,

we know that for each 𝜉 in R𝑛, the variational equation will have

a unique solution 𝑢(𝑡, 𝜉) defined for 𝑡 ∈ 𝐼 and satisfying the initial

condition 𝑢(𝑡0, 𝜉) = 𝜉. For each 𝑡 in 𝐼, the map 𝜉 �→ 𝑢(𝑡, 𝜉) is a linear

map of R𝑛 to itself that we will denote by 𝛿𝜎𝑝(𝑡). What we are going

to see next is that the map (𝑡, 𝑝) �→ 𝜎𝑝(𝑡) is 𝐶
1 and that 𝛿𝜎𝑝(𝑡) is the

differential at 𝑝 of the map 𝑞 �→ 𝜎𝑞(𝑡) of R
𝑛 to itself. (Note that the

derivative of 𝜎𝑝(𝑡) with respect to 𝑡 obviously exists and is continuous

since 𝜎𝑝(𝑡) satisfies 𝜎
′
𝑝(𝑡) = 𝑉 (𝜎𝑝(𝑡)).)

⊳Exercise F–1. Check that if 𝑞 �→ 𝜎𝑞(𝑡) is indeed differentiable

at 𝑝, then its differential must in fact be 𝛿𝜎𝑝(𝑡). Hint: Calculate the

differential of both sides of the differential equation with respect to 𝑝

to see that 𝐷𝜎𝑝(𝑡)(𝜉) satisfies the variational equation. On the right

side of the equation use the chain rule and on the left side interchange

the order of differentiation.
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Recall that (by definition of the differential of a mapping) in

order to prove that 𝑞 �→ 𝜎𝑞(𝑡) is differentiable at 𝑝 and that 𝑢(𝑡, 𝜉) =

𝛿𝜎𝑝(𝑡)(𝜉) is its differential at 𝑝 in the direction 𝜉, what we need to

show is that if 𝑔(𝑡) := ∥(𝜎𝑝+𝜉(𝑡)− 𝜎𝑝(𝑡))− 𝑢(𝑡, 𝜉)∥, then 1
∥𝜉∥𝑔(𝑡) goes

to zero with ∥𝜉∥. What we will show is that there are fixed positive

constants 𝐶 and 𝑀 such that for any positive 𝜖 there exists a 𝛿 so

that 𝑔(𝑡) < 𝐶𝜖 ∥𝜉∥ 𝑒𝑀𝑡 provided ∥𝜉∥ < 𝛿, which clearly implies that
1

∥𝜉∥𝑔(𝑡) goes to zero with ∥𝜉∥, uniformly in 𝑡. To prove the latter

estimate, it will suffice by Gronwall’s Inequality to show that 𝑔(𝑡) <

𝐶𝜖 ∥𝜉∥+𝑀
∫ 𝑡

0
𝑔(𝑠) 𝑑𝑠.

⊳Exercise F–2. Derive this integral estimate. Hint: 𝜎𝑝+𝜉(𝑡) =

𝑝+𝜉+
∫ 𝑡

0
𝑉 (𝜎𝑝+𝜉(𝑠)) 𝑑𝑠 and 𝜎𝑝(𝑡) = 𝑝+

∫ 𝑡

0
𝑉 (𝜎𝑝(𝑠)) 𝑑𝑠, while 𝑢(𝑡, 𝜉) =

𝜉 +
∫ 𝑡

0
𝐷𝑉

𝜎𝑝(𝑠)
𝑢(𝑠, 𝜉) 𝑑𝑠. Taylor’s Theorem with Remainder gives

𝑉 (𝑞 + 𝑥)− 𝑉 (𝑞) = 𝐷𝑉𝑞(𝑥) + ∥𝑥∥ 𝑟(𝑞, 𝑥) where ∥𝑟(𝑞, 𝑥)∥ goes to zero
with 𝑥, uniformly for 𝑞 in some compact set. Take 𝑞 = 𝜎𝑝(𝑠) and

𝑥 = 𝜎𝑝+𝜉(𝑠)− 𝜎𝑝(𝑠) and verify that

𝑔(𝑡) = ∥𝜉∥ ∫ 𝑡

0
𝜌(𝜎𝑝(𝑠), 𝜎𝑝+𝜉(𝑠)− 𝜎𝑝(𝑠)) 𝑑𝑠+

∫ 𝑡

0
𝐷𝑉

𝜎𝑝(𝑠)
𝑔(𝑠) 𝑑𝑠.

Now choose 𝑀 = sup𝑠∈𝐼

∥∥∥𝐷𝑉𝜎𝑝(𝑠)

∥∥∥ and recall that from the theo-

rem on continuity with respect to initial conditions we know that

∥𝜎𝑝+𝜉(𝑠)− 𝜎𝑝(𝑠)∥ < ∥𝜉∥ 𝑒𝐾𝑠. The rest is easy, and we have now

proved the case 𝑟 = 1 of the following theorem.

F.0.1. Theorem on Smoothness w.r.t. Initial Conditions.

Let 𝑉 be a 𝐶𝑟 vector field on R𝑛, 𝑟 ≥ 1, and let 𝜎𝑝(𝑡) denote the

maximal solution curve of 𝑑𝑥
𝑑𝑡 = 𝑉 (𝑥) with initial condition 𝑝. Then

the map (𝑝, 𝑡) �→ 𝜎𝑝(𝑡) is 𝐶
𝑟.

⊳Exercise F–3. Prove the general case by induction on 𝑟. Hint:

As we saw, the first-order partial derivatives are solutions of an ODE

whose right-hand side is of class 𝐶𝑟−1.




