
Appendix E

Parametrized Curves
and Arclength

For many purposes, the precise parametrization of a curve 𝜎 is not

important, in the sense that some property of the curve that we are

interested in is unchanged if we “reparametrize” the curve. Let us

look at just what reparametrization means. Suppose that 𝑡 is a 𝐶1

function with a strictly positive derivative on a closed interval [𝛼, 𝛽].

Then 𝑡 is strictly monotonic, and hence it maps [𝛼, 𝛽] one-to-one

onto some other closed interval [𝑎, 𝑏]. Thus if 𝜎 : [𝑎, 𝑏] → R𝑛 is a

𝐶1 parametrized curve, then 𝜎̃ = 𝜎 ∘ 𝑡 : [𝛼, 𝛽] → R𝑛 is another 𝐶1

parametrized curve which clearly has the same image as 𝜎 and is called

the reparametrization of 𝜎 defined by the parameter transformation

𝑡. (If you like, you can think of 𝑡 as a “variable that parameterizes

the points of the interval [𝛼, 𝛽] by points of the interval [𝑎, 𝑏]” and

with this interpretation 𝜎 and 𝜎̃ become “the same”.) In particular,

given any interval [𝛼, 𝛽], we always find an affine map 𝑡(𝜏 ) = 𝑐𝜏 + 𝑘

that maps it onto [𝑎, 𝑏], so reparametrization allows us to adjust a

parameter interval as convenient in situations where parametrization

is not relevant.

A reparametrization of 𝜎 : [𝑎, 𝑏] → R can always be thought of

as arising by starting from a positive, continuous function 𝜌 : [𝑎, 𝑏] →
R and letting 𝑡 be the inverse function of its indefinite integral, 𝜏 .

In fact 𝜏 (𝑡) :=
∫ 𝑡

𝑎
𝜌(𝜉) 𝑑𝜉 is a smooth 𝐶1 function with a positive

derivative, so it does indeed map [𝑎, 𝑏] one-to-one onto some interval

[𝛼, 𝛽], and by the inverse function theorem 𝑡 := 𝜏−1 : [𝛼, 𝛽] → R is

𝐶1 with a positive derivative. A very important special case of this is

reparametrization by arclength. Suppose that 𝜎 is nonsingular, i.e.,
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𝜎′ never vanishes. Define 𝑠 : [𝑎, 𝑏] → R by 𝑠(𝑡) :=
∫ 𝑡

𝑎
∥𝜎′(𝜉)∥ 𝑑𝜉, and

recall that by definition it gives the arclength along 𝜎 from 𝑎 to 𝑡.

This is a smooth map with positive derivative ∥𝜎′(𝑡)∥ mapping [𝑎, 𝑏]

onto [0, 𝐿], where 𝐿 is the length of 𝜎. The inverse function, 𝑡(𝑠),

mapping [0, 𝐿] to [𝑎, 𝑏], gives the point of [𝑎, 𝑏] where the arclength

of 𝜎 measured from its left endpoint is 𝑠, and the curve 𝑠 �→ 𝜎(𝑡(𝑠))

is a reparametrization of 𝜎 called its reparametrization by arclength.

More generally, we say that a curve 𝜎 : [𝑎, 𝑏] → R𝑛 is parameterized

by arclength if the length of 𝜎 between 𝜎(𝑎) and 𝜎(𝑡) is equal to 𝑡−𝑎,
and we say that 𝜎 is parametrized proportionally to arclength if that

length is proportional to 𝑡− 𝑎.

⊳Exercise E–1. Show that the length of a curve is unchanged by

reparametrization. (Hint: This follows from a combination of the

chain rule and the change of variables formula for an integral.)

⊳Exercise E–2. Show that a curve 𝜎 is parametrized proportion-

ally to arclength if and only if ∥𝜎′(𝑡)∥ is a constant, and it is paramet-

rized by arclength if and only if that constant equals one.

⊳Exercise E–3. Prove the old saying, “A straight line is the short-

est distance between two points.” That is, if 𝜎 : [𝑎, 𝑏] → R𝑛 is

a 𝐶1 path of length 𝐿, then ∥𝜎(𝑏) − 𝜎(𝑎)∥ ≤ 𝐿, with equality if

and only if 𝜎 is a straight line from 𝜎(𝑎) to 𝜎(𝑏). (Hint: As we

have just seen, we can assume without loss of generality that 𝜎 is

parametrized proportionally to arclength, i.e., that ∥𝜎′(𝑡)∥ is a con-

stant. Let 𝑣 := 𝜎(𝑏) − 𝜎(𝑎), so that what we must show is that

∥𝑣∥ ≤ 𝐿 with equality if and only if 𝜎′ is a constant. If 𝑣 = 0, i.e., if

𝜎(𝑏) = 𝜎(𝑎), the result is trivial so we can assume 𝑣 ∕= 0 and define

a unit vector 𝑒 = 𝑣
∥𝑣∥ , so that ∥𝑣∥ = ⟨𝑣, 𝑒⟩. Now 𝑣 =

∫ 𝑏

𝑎
𝜎′(𝑡) 𝑑𝑡, and

since 𝑒 is a constant vector, ∥𝑣∥ = ⟨𝑣, 𝑒⟩ =
∫ 𝑏

𝑎
⟨𝜎′(𝑡), 𝑒⟩ 𝑑𝑡. Finally

note that by the Schwarz Inequality, ⟨𝜎′(𝑡), 𝑒⟩ ≤ ∥𝜎′(𝑡)∥ and equality

holds for all 𝑡 if and only if 𝜎′(𝑡) is a multiple of 𝑒 for each 𝑡, and this

multiple must be a constant since ∥𝜎′(𝑡)∥ is a constant.)




