
Appendix A

Linear Algebra
and Analysis

This short review is not intended as an introduction or tutorial. On

the contrary, it is assumed that the reader is already familiar with

multi-variable calculus, the basic facts concerning metric spaces, and

the elementary theory of finite-dimensional real and complex vector

spaces. The goal of this appendix is rather to clarify just what ma-

terial is assumed, to develop a consistent notation and point of view

towards these subjects for use in the rest of the book, and to for-

mulate some of their concepts and propositions in ways that will be

convenient for applications elsewhere in the text.

A.1. Metric and Normed Spaces

A metric space is just a set 𝑋 with a distance 𝜌(𝑥1, 𝑥2) defined be-

tween any two of its points 𝑥1 and 𝑥2. The distance should be a non-

negative real number that is zero if and only if 𝑥1 = 𝑥2, and it should

be symmetric in 𝑥1 and 𝑥2. Aside from these obvious properties of

anything we would consider calling a distance function, the only other

property we demand of the function 𝜌 (which is also called the metric

of 𝑋) is that the “triangle inequality” hold for any three points 𝑥1, 𝑥2,

and 𝑥3 of 𝑋. This just means that 𝜌(𝑥1, 𝑥3) ≤ 𝜌(𝑥1, 𝑥2) + 𝜌(𝑥2, 𝑥3),

and what it says in words is that “things close to the same thing are

close to each other”.

If {𝑥𝑛} is a sequence of points in 𝑋, then we say this sequence

converges to a point 𝑥 in 𝑋 if lim𝑛→∞ 𝜌(𝑥𝑛, 𝑥) = 0. It follows from

the triangle inequality that if the sequence also converges to 𝑥′, then
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226 A. Linear Algebra and Analysis

𝜌(𝑥, 𝑥′) = 0, so 𝑥 = 𝑥′, i.e., the limit of {𝑥𝑛} is unique if it exists,

and we write lim𝑛→∞ 𝑥𝑛 = 𝑥. The sequence {𝑥𝑛} is called a Cauchy

sequence if 𝜌(𝑥𝑛, 𝑥𝑚) converges to zero as both 𝑚 and 𝑛 tend to

infinity. It is easy to check that a convergent sequence is Cauchy, but

the reverse need not be true, and if every Cauchy sequence in 𝑋 does

in fact converge, then we call 𝑋 a complete metric space.

If 𝑋 and 𝑌 are metric spaces and 𝑓 : 𝑋 → 𝑌 is a function, then

we call 𝑓 continuous if and only if 𝑓(𝑥𝑛) converges to 𝑓(𝑥) whenever

𝑥𝑛 converges to 𝑥. An equivalent definition is that given any positive

𝜖 and an 𝑥 in 𝑋, there exists a 𝛿 > 0 such that if 𝜌
𝑋
(𝑥, 𝑥′) < 𝛿, then

𝜌
𝑌
(𝑓(𝑥), 𝑓(𝑥′)) < 𝜖, and if we can choose this 𝛿 independent of 𝑥,

then we call 𝑓 uniformly continuous . A positive constant 𝐾 is called

a Lipschitz constant for 𝑓 if for all 𝑥1, 𝑥2 in 𝑋, 𝜌
𝑌
(𝑓(𝑥1), 𝑓(𝑥2)) <

𝐾𝜌𝑋 (𝑥1, 𝑥2), and we call 𝑓 a contraction if it has a Lipschitz constant

𝐾 satisfying 𝐾 < 1. Note that if 𝑓 has a Lipschitz constant (in

particular, if it is a contraction), then 𝑓 is automatically uniformly

continuous (take 𝛿 = 𝜖/𝐾).

⊳Exercise A–1. Show that if 𝐾 is a Lipschitz constant for 𝑓 : 𝑋 →
𝑌 and 𝐿 is a Lipschitz constant for 𝑔 : 𝑌 → 𝑍, then 𝐾𝐿 is a Lipschitz

constant for 𝑔 ∘ 𝑓 : 𝑋 → 𝑍.

The classic example of a metric space is R with 𝜌(𝑥, 𝑦) = ∣𝑥− 𝑦∣,
and this has an important generalization. Namely, if 𝑉 is any (real

or complex) vector space, then a nonnegative real-valued function

𝑣 �→ ∥𝑣∥ on 𝑉 is called a norm for 𝑉 if it shares three basic properties

of the absolute value of a real number, namely i) positve homogeneity,

i.e., ∥𝛼𝑣∥ = ∣𝛼∣ ∥𝑣∥ for a scalar 𝛼; ii) ∥𝑣∥ = 0 only if 𝑣 = 0; and iii)

the triangle inequality ∥𝑣1 + 𝑣2∥ ≤ ∥𝑣1∥ + ∥𝑣2∥ for all 𝑣1, 𝑣2 ∈ 𝑉 .

A vector space 𝑉 together with a choice of norm for 𝑉 is called a

normed vector space, and on such a 𝑉 we get a metric by defining

𝜌(𝑣1, 𝑣2) = ∥𝑣1 − 𝑣2∥. If this makes 𝑉 a complete metric space, then

the normed space 𝑉 is called a Banach space. In particular, R𝑛 and

C𝑛 with their usual norms are Banach spaces.

If 𝐴 is a subset of a metric space 𝑋, then the metric for 𝑋 re-

stricted to 𝐴 × 𝐴 defines a metric for 𝐴, and the resulting metric

space is called a subspace of 𝑋.
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If 𝑥 is a point of the metric space 𝑋 and 𝜖 > 0, then we denote

{𝑦 ∈ 𝑋 ∣ 𝜌(𝑥, 𝑦) < 𝜖}, the so-called “open ball of radius 𝜖 about 𝑥

in 𝑋”, by 𝐵𝜖(𝑥,𝑋). A subset 𝐴 of 𝑋 is a neighborhood of 𝑥 if it

includes 𝐵𝜖(𝑥,𝑋) for some positive 𝜖, and 𝐴 is called an open subset

of 𝑋 if it is a neighborhood of each of its points. On the other hand

𝐴 is called a closed subset of 𝑋 if the limit of any sequence of points

in 𝐴 is itself in 𝐴. It is easily proved that 𝐴 is closed in 𝑋 if and only

if its complement in 𝑋 is open and that 𝑓 : 𝑋 → 𝑌 is continuous if

and only if the inverse image, 𝑓−1(𝑂), of every open subset 𝑂 of 𝑌

is open in 𝑋.

If 𝑋 is a metric space, then 𝑋 itself is both open and closed

in 𝑋, and hence the same is true of its complement, the empty set.

If there are no other subsets of 𝑋 that are both open and closed

(or equivalently if 𝑋 cannot be partitioned into two complementary

nonempty open sets), then 𝑋 is called a connected space. We say

that a subset 𝐴 of 𝑋 is connected if the corresponding subspace is

a connected metric space. There is an important characterization of

the connected subsets of R, namely 𝐴 ⊆ R is connected if and only

if, it is an interval, i.e., if and only if, whenever it contains two points,

it also contains all points in between.

A subset 𝐴 of a metric space is called compact if every sequence

in 𝐴 has a subsequence that converges to a point of 𝐴. The Bolzano-

Weierstrass Theorem characterizes the compact subsets of R𝑛 (and

C𝑛). Namely they are precisely those sets that are both closed and

bounded. (A subset 𝐴 of a metric space is bounded if and only if the

distances between points of 𝐴 are bounded above.)

A.2. Inner-Product Spaces

An inner product on a real vector space 𝑉 is a real-valued function

on 𝑉 × 𝑉 , (𝑥, 𝑦) �→ ⟨𝑥, 𝑦⟩ having the following three properties:

1) Symmetry: ⟨𝑥, 𝑦⟩ = ⟨𝑦, 𝑥⟩ for all 𝑥, 𝑦 ∈ 𝑉 .

2) Positive definiteness: ⟨𝑥, 𝑥⟩ ≥ 0, with equality if and only if 𝑥 = 0.

3) Bilinearity: ⟨𝛼𝑥 + 𝛽𝑦, 𝑧⟩ = 𝛼 ⟨𝑥, 𝑧⟩ + 𝛽 ⟨𝑦, 𝑧⟩, for all 𝑥, 𝑦, 𝑧 ∈ 𝑉

and all 𝛼, 𝛽 ∈ R.
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An inner-product space is a pair (𝑉, ⟨ , ⟩) consisting of a real vector

space 𝑉 and a choice of inner product for 𝑉 , but it is customary to

suppress reference to the inner product. The motivating example of

an inner-product space is of course R𝑛 with the usual “dot-product”

⟨𝑥, 𝑦⟩ :=
∑𝑛

𝑖=1 𝑥𝑖𝑦𝑖.

In what follows, 𝑉 will denote an arbitrary inner-product space,

and we define ∥𝑥∥, the norm of an element 𝑥 of 𝑉 , by ∥𝑥∥ :=
√⟨𝑥, 𝑥⟩.

By bilinearity, if 𝑥, 𝑦 ∈ 𝑉 and 𝑡 ∈ R, then ∥𝑡𝑥 + 𝑦∥2 is a quadratic

polynomial function of 𝑡, namely,

∥𝑡𝑥 + 𝑦∥2 = ⟨𝑡𝑥 + 𝑦, 𝑡𝑥 + 𝑦⟩ = ∥𝑥∥2 𝑡2 + 2 ⟨𝑥, 𝑦⟩ 𝑡 + ∥𝑦∥2 ,
and note the important special case

∥𝑥 + 𝑦∥2 = ∥𝑥∥2 + 2 ⟨𝑥, 𝑦⟩ + ∥𝑦∥2 .
Finally, for reasons we shall see a little later, the two vectors 𝑥 and 𝑦

are called orthogonal if ⟨𝑥, 𝑦⟩ = 0, so in this case we have

A.2.1. Pythagorean Identity. If 𝑥 and 𝑦 are orthogonal vectors

in an inner product space, then ∥𝑥 + 𝑦∥2 = ∥𝑥∥2 + ∥𝑦∥2 .
Recall some basic high-school mathematics concerning a quadratic

polynomial 𝑃 (𝑡) = 𝑎𝑡2 + 𝑏𝑡 + 𝑐. (For simplicity, we assume 𝑎 is

positive.) The discriminant of 𝑃 (𝑡) is the quantity 𝑏2 − 4𝑎𝑐, and it

distinguishes what kind of roots the polynomial has. In fact, the so-

called “quadratic formula” says that the two (possibly complex) roots

of 𝑃 (𝑡) are (−𝑏±√
𝑏2 − 4𝑎𝑐 )/2𝑎. So there are three cases:

Case 1: 𝑏2 − 4𝑎𝑐 > 0. Then 𝑃 (𝑡) has two real roots. Between these

roots 𝑃 (𝑡) is negative, and outside of the interval between

the roots it is positive.

Case 2: 𝑏2 − 4𝑎𝑐 = 0. Then 𝑃 (𝑡) has only the single real root −𝑏/2𝑎,

and elsewhere 𝑃 (𝑡) > 0.

Case 3: 𝑏2−4𝑎𝑐 < 0. Then 𝑃 (𝑡) has no real roots, and 𝑃 (𝑡) is positive

for all real 𝑡.

For the polynomial ∥𝑡𝑥 + 𝑦∥2 we see that 𝑎 = ∥𝑥∥2, 𝑐 = ∥𝑦∥2, and 𝑏 =

2 ⟨𝑥, 𝑦⟩, so the discriminant is 4(∣ ⟨𝑥, 𝑦⟩ ∣2−∥𝑥∥2 ∥𝑦∥2). Case 1 is ruled

out by positive definiteness. In Case 2, we have ∣ ⟨𝑥, 𝑦⟩ ∣ = ∥𝑥∥ ∥𝑦∥,
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so if 𝑡 is the root of the polynomial, then ∥𝑥 + 𝑡𝑦∥ = 0, so 𝑥 = −𝑡𝑦,

and we see that in this case 𝑥 and 𝑦 are linearly dependent. Finally,

in Case 3, ∣ ⟨𝑥, 𝑦⟩ ∣ < ∥𝑥∥ ∥𝑦∥, and since 𝑥 + 𝑡𝑦 is never zero, 𝑥 and

𝑦 are linearly independent. This proves one of the most important

inequalities in all of mathematics.

A.2.2. Schwartz Inequality. For all 𝑥, 𝑦 ∈ 𝑉 , ∣ ⟨𝑥, 𝑦⟩ ∣ ≤
∥𝑥∥ ∥𝑦∥, with equality if and only if 𝑥 and 𝑦 are linearly dependent.

⊳Exercise A–2. Use the Schwartz Inequality to deduce the triangle

inequality:

∥𝑥 + 𝑦∥ ≤ ∥𝑥∥ + ∥𝑦∥ .

(Hint: Square both sides.)

This shows that an inner-product space is a normed space.

∙Example A–1. Let 𝐶([𝑎, 𝑏]) denote the vector space of contin-

uous real-valued functions on the interval [𝑎, 𝑏]. For 𝑓, 𝑔 ∈ 𝐶([𝑎, 𝑏])

define ⟨𝑓, 𝑔⟩ =
∫ 𝑏

𝑎
𝑓(𝑥)𝑔(𝑥) 𝑑𝑥. It is easy to check that this satisfies

our three conditions for an inner product.

In what follows, we assume that 𝑉 is an inner-product space. If

𝑣 ∈ 𝑉 is a nonzero vector, we define a unit vector 𝑒 with the same

direction as 𝑉 by 𝑒 := 𝑣/ ∥𝑣∥. This is called normalizing 𝑣, and if 𝑣

already has unit length, then we say that 𝑣 is normalized . We say that

𝑘 vectors 𝑒1, . . . , 𝑒𝑘 in 𝑉 are orthonormal if each 𝑒𝑖 is normalized and

if the 𝑒𝑖 are mutually orthogonal. Note that these conditions can be

written succinctly as ⟨𝑒𝑖, 𝑒𝑗⟩ = 𝛿𝑖𝑗 , where 𝛿𝑖𝑗 is the so-called Kronecker

delta symbol and is defined to be zero if 𝑖 and 𝑗 are different and 1 if

they are equal.

⊳Exercise A–3. Show that if 𝑒1, . . . , 𝑒𝑘 are orthonormal and 𝑣 is

a linear combination of the 𝑒𝑖, say 𝑣 = 𝛼1𝑣1 + ⋅ ⋅ ⋅+𝛼𝑘𝑣𝑘, then the 𝛼𝑖

are uniquely determined by the formulas 𝛼𝑖 = ⟨𝑣, 𝑒𝑖⟩. Deduce from

this that orthonormal vectors are automatically linearly independent.

Orthonormal bases are also referred to as frames and they play

an very important role in all explicit computation in inner-product

spaces. Note that if 𝑒1, . . . , 𝑒𝑛 is an orthonormal basis for 𝑉 , then
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every element of 𝑉 is a linear combination of the 𝑒𝑖, so that by the

exercise each 𝑣 ∈ 𝑉 has the expansion 𝑣 =
∑𝑛

𝑖=1 ⟨𝑣, 𝑒𝑖⟩ 𝑒𝑖.
∙Example A–2. The “standard basis” forR𝑛 is 𝛿1, . . . , 𝛿𝑛, where

𝛿𝑖 = (𝛿11 , . . . , 𝛿
𝑖
𝑛). It is clearly orthonormal.

Let 𝑉 be an inner product space and 𝑊 a linear subspace of 𝑉 .

We recall that the orthogonal complement of 𝑊 , denoted by 𝑊⊥, is

the set of those 𝑣 in 𝑉 that are orthogonal to every 𝑤 in 𝑊 .

⊳Exercise A–4. Show that 𝑊⊥ is a linear subspace of 𝑉 and that

𝑊 ∩𝑊⊥ = 0.

If 𝑣 ∈ 𝑉 , we will say that a vector 𝑤 in 𝑊 is its orthogonal

projection on 𝑊 if 𝑢 = 𝑣 − 𝑤 is in 𝑊⊥.

⊳Exercise A–5. Show that there can be at most one such 𝑤. (Hint:

If 𝑤′ is another, so 𝑢′ = 𝑣− 𝑢 ∈ 𝑊⊥, then 𝑢− 𝑢′ = 𝑤′ −𝑤 is in both

𝑊 and 𝑊⊥.)

A.2.3. Remark. Suppose 𝜔 ∈ 𝑊 . Then since 𝑣 − 𝜔 = (𝑣 − 𝑤) +

(𝑤 − 𝜔) and 𝑣 − 𝑤 ∈ 𝑊⊥ while (𝑤 − 𝜔) ∈ 𝑊 , it follows from the

Pythagorean identity that ∥𝑣 − 𝜔∥2 = ∥𝑣 − 𝑤∥2 + ∥𝑤 − 𝜔∥2. Thus,

∥𝑣 − 𝜔∥ is strictly greater than ∥𝑣 − 𝑤∥ unless 𝜔 = 𝑤. In other words,

the orthogonal projection of 𝑣 on 𝑤 is the unique point of 𝑊

that has minimum distance from 𝑣.

We call a map 𝑃 : 𝑉 → 𝑊 the orthogonal projection of 𝑉 onto

𝑊 if 𝑣 − 𝑃𝑣 is in 𝑊⊥ for all 𝑣 ∈ 𝑉 . By the previous exercise this

mapping is uniquely determined if it exists (and we will see below

that it always does exist).

⊳Exercise A–6. Show that if 𝑃 : 𝑉 → 𝑊 is the orthogonal pro-

jection onto 𝑊 , then 𝑃 is a linear map. Show also that if 𝑣 ∈ 𝑊 ,

then 𝑃𝑣 = 𝑣 and hence 𝑃 2 = 𝑃 .

⊳Exercise A–7. Show that if 𝑒1, . . . , 𝑒𝑛 is an orthonormal basis

for 𝑊 and if for each 𝑣 ∈ 𝑉 we define 𝑃𝑣 :=
∑𝑛

𝑖=1 ⟨𝑣, 𝑒𝑖⟩ 𝑒𝑖, then 𝑃 is

orthogonal projection onto 𝑊 . In particular, orthogonal projection

onto 𝑊 exists for any subspace 𝑊 of 𝑉 that has some orthonormal

basis. Since, as we now will show, any 𝑊 has an orthonormal basis,

orthogonal projection on a subspace is always defined.
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There is a beautiful algorithm, called the Gram-Schmidt Pro-

cedure, for starting with an arbitrary sequence 𝑤1, 𝑤2, . . . , 𝑤𝑘 of

linearly independent vectors in an inner-product space 𝑉 and manu-

facturing an orthonormal sequence 𝑒1, . . . , 𝑒𝑘 out of them. Moreover

it has the nice property that for all 𝑗 ≤ 𝑘, the sequence 𝑒1, . . . , 𝑒𝑗
spans the same subspace 𝑊𝑗 of 𝑉 as is spanned by 𝑤1, . . . , 𝑤𝑗 .

In case 𝑘 = 1 this is easy. To say that 𝑤1 is linearly independent

just means that it is nonzero, and we take 𝑒1 to be its normalization:

𝑒1 := 𝑤1/ ∥𝑤1∥. Surprisingly, this trivial special case is the crucial

first step in an inductive procedure.

In fact, suppose that we have constructed orthonormal vectors

𝑒1, . . . , 𝑒𝑚 (where 𝑚 < 𝑘) and that they span the same subspace 𝑊𝑚

that is spanned by 𝑤1, . . . , 𝑤𝑚. How can we take the next step and

construct 𝑒𝑚+1 so that 𝑒1, . . . , 𝑒𝑚+1 is orthonormal and spans the

same subspace as 𝑤1, . . . , 𝑤𝑚+1?

First note that since the 𝑒1, . . . , 𝑒𝑚 are linearly independent and

span 𝑊𝑚, they are an orthonormal basis for 𝑊𝑚, and hence we

can find the orthogonal projection 𝜔𝑚+1 of 𝑤𝑚+1 onto 𝑊𝑚 using

the formula 𝜔𝑚+1 =
∑𝑚

𝑖=1 ⟨𝑤𝑚+1, 𝑒𝑖⟩ 𝑒𝑖. Recall that this means

that 𝜖𝑚+1 = 𝑤𝑚+1 − 𝜔𝑚+1 is orthogonal to 𝑊𝑚, and in particu-

lar to 𝑒1, . . . , 𝑒𝑚. Now 𝜖𝑚+1 cannot be zero! Why? Because if

it were, then we would have 𝑤𝑚+1 = 𝜔𝑚+1 ∈ 𝑊𝑚, so 𝑤𝑚+1 would

be a linear combination of 𝑤1, . . . , 𝑤𝑚, contradicting the assumption

that 𝑤1, . . . , 𝑤𝑘 are linearly independent. But then we can define

𝑒𝑚+1 to be the normalization of 𝜖𝑚+1, i.e., 𝑒𝑚+1 := 𝜖𝑚+1/ ∥𝜖𝑚+1∥,
and it follows that 𝑒𝑚+1 is also orthogonal to 𝑒1, . . . , 𝑒𝑚, so that

𝑒1, . . . , 𝑒𝑚+1 is orthonormal. Finally, it is immediate from its defini-

tion that 𝑒𝑚+1 is a linear combination of 𝑒1, . . . , 𝑒𝑚 and 𝑤𝑚+1 and

hence of 𝑤1, . . . , 𝑤𝑚+1, completing the induction. Let’s write the first

few steps in the Gram-Schmidt Process explicitly.

(1) 𝑒1 := 𝑤1/ ∥𝑤1∥ % normalize 𝑤1 to get 𝑒1.

(2a) 𝜔2 := ⟨𝑤2, 𝑒1⟩ 𝑒1 % get projection 𝜔2 of 𝑤2 on 𝑊1.

(2b) 𝜖2 := 𝑤2 −𝜔2 % subtract 𝜔2 from 𝑤2 to get 𝑊⊥
1

component 𝜖2 of 𝑤2.
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(2c) 𝑒2 := 𝜖2/ ∥𝜖2∥ % and normalize it to get 𝑒2.

(3a) 𝜔3 := ⟨𝑤3, 𝑒1⟩ 𝑒1 % get projection 𝜔3 of 𝑤3 on 𝑊2.

+ ⟨𝑤3, 𝑒2⟩ 𝑒2
(3b) 𝜖3 := 𝑤3 − 𝜔3 % subtract 𝜔3 from 𝑤3 to get 𝑊⊥

2

component 𝜖3 of 𝑤3.

(3c) 𝑒3 := 𝜖3/ ∥𝜖3∥ % and normalize it to get 𝑒3.

. . .

If 𝑊 is a 𝑘-dimensional subspace of an 𝑛-dimensional inner-

product space 𝑉 , then we can start with a basis for 𝑊 and extend

it to a basis for 𝑉 . If we now apply the Gram-Schmidt Procedure to

this basis, we end up with an orthonormal basis for 𝑉 with the first

𝑘 elements in 𝑊 and with the remaining 𝑛− 𝑘 in 𝑊⊥. This tells us

several things:

∙ 𝑊⊥ has dimension 𝑛− 𝑘.

∙ 𝑉 is the direct sum of 𝑊 and 𝑊⊥. This just means that every

element of 𝑉 can be written uniquely as the sum 𝑤 + 𝑢 where

𝑤 ∈ 𝑊 and 𝑢 ∈ 𝑊⊥.

∙ (𝑊⊥)⊥ = 𝑊 .

∙ If 𝑃 is the orthogonal projection of 𝑉 on 𝑊 and 𝐼 denotes the

identity map of 𝑉 , then 𝐼 − 𝑃 is orthogonal projection of 𝑉 on

𝑊⊥.




